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Bosonic fields in the stringlike defect model
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We study localization of bosonic bulk fields on a stringlike defect with codimension 2 in a general space-
time dimension in detail. We show that in cases of spin-0 scalar and spin-1 vector fields there are an infinite
number of massless Kaluza-Klein states which are degenerate with respect to the radial quantum number, but
only the massless zero-mode state among them is coupled to the fermion on the stringlike defect. We also
comment on interesting extensions of the model at hand to various directions such as “little” superstring
theory, conformal field theory, and a supersymmetric construction.

PACS numbsefs): 11.25.Mj, 11.27+d

I. INTRODUCTION tension or on a brane with negative tengiérli]. Moreover,
it is shown that spin-1/2 and -3/2 fields are localized not on
In theories where our four dimensional world is a three-a brane with positive tension but on a brane with negative
brane embedded in a higher-dimensional spdces], the  tension[10,11. Thus, in order to satisfy the localization of
conventional Kaluza-Klein scenario would be modified dras-standard model particles on a brane with positive tension, it
tically. In most works on Kaluza-Klein compactification thus seems that some additional interactions except gravity must
far, a higher-dimensional manifold is assumed to be compe also introduced in the bulk.
posed of as a direct product of a noncompact four- More recently, the possibility of extending the Randall-
dimensional Minkowski space-time and a compact internasyndrum domain wall model to higher-dimensional topo-
manifold with the size of the compact space being set by thgygical objects was explored3—23. In particular, we find
Planck scale. However, in this approach it seems to be quity,t Einstein’s equations admit a stringlike defect with codi-
difficult to stabilize the size of all the internal dimensions ,ansion 2 in addition to a domain wall with codimensiof 1.

around the Planck scale via some nonperturbative effect% particular, the existence of the stringlike defect makes it

This problem should be SOIV?d in the b_rane wdrld. .. .. possible to think of a three-brane in six-dimensional anti—de
In recent years, an alternative scenario of compactificatio itter space

has been put forwarg5]. This new idea is based on the In this stringlike defect model, the localization of bulk

possibility that our world is a three-brane embedded in g. : . S
higher-dimensional space-time with a nonfactorizablsfIGIdS has been also investigated. In R@f8], it is shown

warped geometry. In this scenario, we are free from théhat the sp.in-2 graviton is localized on the three-brane an.d
moduli stabilization problem in the sense that the internafl€ corrections to Newton’s law are more supressed than in
manifold is noncompact and does not need to be compactf’® domain wall model. Afterwards, the present author ex-
fied to the Planck scale anymore, which is one of reasonBlored the localization of various spin fields on the stringlike
why this new compactification scenario has attracted séefect in a general dimension and obtained the following
much attention. An important ingredient of this scenario isfacts[22]: spin-0, -1, and -2 bosonic fields are localized on a
that all the matter fields are thought of as confined to thestringlike defect with the exponentially decreasing warp fac-
three-brane, whereas gravity is free to propagate in the extir, whereas spin—1/2 and3/2 fermionic fields are localized on
dimensions. Such localization of matter would be indeed defect with the exponentially increasing warp factor. These
possible in D-brane theory6] and M theory[7], but at results for the localization of various spin fields coincide
present it is far from complete to realize the Rundall-With the corresponding oneid1] in the Randall-Sundrum
Sundrum model[5] within the framework of superstring Mmodel[5] and many brane mod¢&4,25 except the spin-1
theory. Thus, it is worthwhile to explore whether such local-vector field. It is of interest that there is no localized vector
ization is also possible in local field theory. field on the brane in the domain wall modelhile the vec-

In fact, the localization mechanism has been recently intor field can be localized on the defect in the stringlike
vestigated in AdS space[8—12. In particular, it is shown Mmodel. This phenomenon can be briefly explained as fol-
that the spin-0 field is localized on a brane with positivelows: In the Randall-Sundrum model, we can see that the
tension which also localizes the gravitghl], while the
spin-1 field is not localized either on a brane with positive

2In this terminology, topological defects with codimensions 3 and
4, respectively, would be called a monopolelike defect and an in-
*Email address: ioda@edogawa-u.ac.jp stantonlike defect.

YIn a supersymmetric model, flat directions could appear so that 3See Ref[26] for an interesting possibility of electric charge non-
the stability problem of moduli seems at first glance to be not saconservation in a brane world where a higher-dimensional generali-
important as in a nonsupersymmetric model. But in this case, weation of the Randall-Sundrum model is used in order to localize
need a fine-tuning of the parameters. gauge fields on a brane.
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overall coefficient in front of the gauge field action is diver- )
gent so that we do not have a normalizable zero mode of the Run= 5 9unR=—Agunt kpTun, 1)
bulk gauge field. On the other hand, in our stringlike model,

we h?ve an agldlt!or][ﬂl V\éarpked factgr cotm'ln'g frczjrglﬁart tOf :E%here kp denotes thé-dimensional gravitational constant.
anguiar variable in the background metric in addition to eThroughout this article we follow the standard conventions

conventional warped ch_tor. _Combmed W'th_ these WO3nd notation of the textbook of Misner, Thorne, and Wheeler
warped factors, the coefficient in front of the action become 27]

finite, so the zero mode of the bulk gauge field is normaliz- L
able and is consequently localized on the stringlike defect.

One aim of the present paper is to investigate this inter- _ M AN VL™ eadb
esting property of bulk bosonic fields in the stringlike defect ds*=gyndx"dx = 9, 0X“0X"+ gapdX7dX
model in more detail. The case of a spin-2 graviton field has — A—ADA L] ¥ 21 a—B(NAO2

; ) . = x#dx”+dre+ Q 2

been already examined in Refd8,23, so we will concen- € gu,dxd d € -y, 2
trate on the study of spin-0 scalar and spin-1 vector erIdS\'/vhereM ,N, ... denoteD-dimensional space-time indices,
We will show that there are an infinite number of massless N “dimensional brane ones. and.b
Kaluza-Klein(KK) modes which are degenerate with respect‘u“_’di;n'e'risiogal extra spatial ones. so thé e uaDt’ ’ +n
to the radial quantum number, but only one massless fiel Ids. (W >f And dQZ' tand (f] th?p tri
among them is coupled to fermions on the stringlike defect. olds.(We assume=4.) An n—1 Stands for the metric

Moreover, the KK excitations of the gauge field have van-°" & ur:cith©—1)—slphere,_ VglhiCh is concretely expressed in
ishing coupling to spin-1/2 fermions on the defect, so the!®MS Of the angular variablet as
gauge field can exist in the bulk without meeting any phe-

nomenological constraints on the model, which should be

et us adopt the following metriénsatz

dQ2_,=d65+sir? 6,d63+ sir? 6,sir? 6;d 62+ - - -

contrasted with the Randall-Sundrum domain wall model n—1
where the strong coupling of the KK excitations of gauge +[1 sirt6,dé?. (3)
fields to the brane fermion gave rise to a potential internal i=2

inconsistency within the theory8,9].

This paper is organized as follows. In the next section, we Moreover, we shall take thé\nsatz for the energy-
review a stringlike defect solution with codimension 2. In momentum tensor respecting the spherical symmetry:
Sec. lll, the Kaluza-Klein decomposition of scalar fields is

studied in a background obtained in Sec. Il. Then, in Sec. IV, Ty =68,16(r),
the procedure used in Sec. Il is applied to the case of gauge
fields. The final section is devoted to a discussion. Tr=t.(r),
IIl. STRINGLIKE DEFECT TZ§=TZ§= EE =TZ:=t0(r), 4

Let us start with a brief review of a stringlike defect so-
lution to Einstein’s equations with sources to fix our notationwheret; (i=0,r,#) are functions of only the radial coordi-
and conventionf22]. We consider Einstein’s equations with nater.
a bulk cosmological constant and an energy-momentum  With these Ansdze after a straightforward calculation,
tensorTyy in generalD dimensions: Einstein’s equation$l) reduce to

~ n—1 -1
i Pl X >A,B,_p<p4 ) a2

-1 -2
WD) B2 (n-1)(n-2)eP- 20+ 263t =0, (9

p(p+1)

p(n—Z)A,B,_(n—l)(n—Z) :

e"R+(n—2)B"——— 2 (B")?+(n—2)(n—3)eB+pA’— (A")2=2A+2kht,=0,  (6)

)

p_2 AR ” n—1 rn’
Te R+(p 1)(A A'B ) )

"2 " n "2 B 2
. (A)2+(n=1)| B'= 7 (B)?+(n—2)e®|-2A+2x3t,=0,  (7)
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where the prime denotes the differentiation with respect to Our purpose is to find a stringlike defect solution, that is,
andR is the scalar curvature associated with the brane metrig =2, with a warp factoA(r)=cr (c is a positive constant
éw_ Here we define the cosmological constant on the ( to the above equation§The case oh=1 corresponds to a

—1)-brane,A,, by the equation domain wall solution. The necessity of this exponentially
R 1. . A decreasing warp factor is to bind gravity to thdrane. For
R~ EgMVR=—Ang. (8)  generality, we consider a general space-time dimenBion

and a general brane dimensignwith D=p+2, but the
Mhhysical interest, of course, lies in the case of six space-time

dimensions D=6) and a three-brang&4). In the case of

n=2, under theAnsatz Ar)=cr, Einstein’s equations5),

In addition, the conservation law for the energy-momentu
tensor,VMT,,=0, takes the form

n—1
tr’ZSA'(tr—toH TB’(t,—ta). (9) (6, (7) are of the form
|
« -1
e R— ch'— %CZ—ZA‘FZK%tr:O, (10)
N +1
e“'R— %Cz—ZA—FZK%tg: 0, (12)
p_2 (ife p_l ’ p(p_l) 2 ” 1 "2 2+ _
o€ R-——cB 4 CP+B"= 5(B)?—2A+2xHt,=0, (12)
|
and the conservation law takes the form dsz:efcréwdxﬂdxurdrhr Rgefcrd 62, (18)
=Pt —t +1B’t t (13
=-c(t,— = —ty).
=3t T 5Bt with Ry being a length scale which we take to be of order

) ) unity. Here the positive constait the brane scalar curva-
From these equations, general solutions can be found agre, and the brane cosmological constant are, respectively,

follows: given by
ds?=e °'g,,dx*dx"+dr?+e BNde?, (14)
, —8A
where c p(p+ 1)’
4 r
B(r)=cr+—Kgf dr(t,—t,), (15)
>e R= 2P\ 0 19
2 1 2 ) pm2 " "
c= p(p+1)( 8A+8kpa),
In this case, as in the corresponding domain wall solution,
- 2p _ 2 the bulk geometry is the anti—de Sitter space, and the brane
R= EAP_ —2Kpp- (16) geometry is Ricci flat with vanishing cosmological constant.
It has been recently found that this special solution corre-
Heret, must take a definite form, which is given by sponds to alocal defect in the sense that the energy-
momentum tensor is strictly vanishing outside the string core
ty=pBe" + «a, (17 [18,23

. ) ] Another specific solution occurs when we have the spon-
with o and 8 being some constants. Moreover, in order t0taneous symmetry breakdowp=—t, [17]:

guarantee the positivity af?, o should satisfy an inequality
—8A+8«k3a>0.
Two types of special solution deserve more scrutiny. A d52=e‘°réwdx”“dx”+dr2+ Rae °1'd6?, (20)
specific solution is the one without sourcés<0). Then we
get a special solution which was found folaeal string in
Ref.[18] and for aglobal string in Ref.[15]: where
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) 1 5 Let us consider the action of a massless real scalar
co= m(_8A+8KDtﬁ)>O1 coupled to gravity,
1
= 2ty So=— 5[ ®xaga Lo, @
pc
~ 2p from which the equation of motion can be derived:
R= mAp:O. (21)
1
/ MN —

Notice that this solution is more general than the previous \/_—gaM( 99" n®)=0. (26)

one (18) since this solution reduces to E(8) whent,
=.O. In Ref.[23], the solution(20) was called globaldefect From now on we shall takeéwz 7., and defineP(r)
since there appears a hedgehog-type configuration outsides—cr |, the background metrieL8), the equation of mo-

the string core. _ ) . tion (26) reads
To close this section, let us comment on an interesting

global defect recently found in a general dimension in Ref. 1
[23]. To gain theglobal topological defect, the antisymmet-  P~19#*9,9,® + P~ (P* 125 (p(P* 12 )+ EP*&%@

ric tensor field with rankn—2 is added to the Einstein- 0
Hilbert action with a cosmological constant. Then the  _g, 27)
energy-momentum tensor associated with the-2)-form '
field in the bulk has the property Let the KK expansion ofP be given by
tozt,—:_tﬁ. (22) Xn(r)

<1><xM>=n§0 ¢<“v'><xﬂ>WY.<o>. (28)

The Ansatztaken in Ref[23] is 0

A(r)=cr, B(r)=const. (23 Here Y,(6) are in general the eigenfunction of the scalar

LaplacianA on a unit f—1)-sphere with the eigenvalues

With this Ansatz(23), it is easy to see that Einstein’s equa- | (1+n—2). Now we are taking account of a stringy defect

tions(5), (6), (7) and the conservation la@®) require impor-  with codimension 2; i.e.n is chosen to 2, so we have an
tant equations equation

to=t,=const, t,=const, (24) AY(0)=12Y,(0), (29

in addition to the other inessential equations for the presenwith 1=0,1,2 ... . AndY,(6) satisfy the following ortho-
consideration. These conditiofi24) are more general than normality condition:

Eq. (22), so if an energy-momentum tensor satisfies Egs.
(24), Einstein’s equations with such an energy-momentum
tensor would admit thglobal topological defect with back-
ground metric(23) as a solution in a general space-time di-
mension. Finally, note that this neglobal defect has the Using the KK expansiof28), the equation of motio(27)
same property as the domain wall with respect to the localreduces to the well-known Klein-Gordon equation with the
ization of various bulk fields. KK massean,,

2
. doY,(0)Y(0)= 9. (30

nv —m2) HN) =
I1l. KALUZA-KLEIN DECOMPOSITION (7 a/‘&” mn)¢ 0, (31

OF SCALAR FIELD where we have requireg to satisfy the following differen-

In a previous paper, it was shown that spin-0, -1, and -2ial equation:
bosonic fields are localized on thebrane defect with the
exponentially decreasing warp factor, while spin-1/2 and
=3/2 fermionic fields are not so in the stringlike defE2®].
Thus, it is natural to consider first the case of a bulk scalar
field. The case of a bulk vector field will be examined in the Actually, it is easily shown that by means of E88), (29),

next section. The spin-2 graviton was examined in detail inN30), and(32) the starting actiori25) can be written as
Ref.[18], so we skip this case in this paper. From now on,

|2
— ( P~ (P=172 p(p+1)25 E) Xn= mﬁXn . (32
0

for clarity we shall limit our attention to #cal stringlike 1 =

solution (18) since the generalization to global solution Se=—3 2 dPx[ 9*"d,,"a, "D

(20) is straightforward. Of course, we have implicitly as- ni=o

sumed that various bulk fields considered below make little +mZpMD g(nN] (33
contribution to the bulk energy so that the solutid®) re-

mains valid even in the presence of bulk fields. where we have also used the orthonormality condition
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p+1

2

z

o , massive. Here it is worth noticing that the masslesgave
Jo drP®P= 12y xn = Snn - (34 mode is degenerate with respect to the radial quantum num-
ber n since the KK masses depend on ohlin the limit r
To analyze the scalar KK mass spectrum, it is necessary»e. Thus, we are in danger of the existence of an infinite
to solve Eq.(32) explicitly. Defining M2=m2—12/R3, z,  number of massless modes on the defect, which seems to be
=(2/c)M,P~ Y2 andh,=PP D"\ Eq.(32) can be writ- against the phenomenology. Luckily enough, however, as
ten in the form will be shown below, only a uniqgue massless mode with
=0 couples to fermions on the defect since the coupling
d>2 1 d 1 2 constant between the remaining massless modes nwith
&Jr Z_n EJF h,=0, (39 and the defect fermion vanishes in the infinite volume limit.
It would be then natural to identify this massless zero mode
which is nothing but the Bessel equation of ordgy ( with n=_0 as the Higgs field in our world from the phenom-
+1)/2. Thus, the solutions are of the form enological viewpoint. _ o _
As is shown in Ref[22], the spin-1/2 fermion is localized
1 Y on a defect with an exponentially rising warp factor, so it is
Xn=y_P PEOMI pr12(za) + anY(pr1y2Zn)], (36)  necessary to invoke additional interactions except gravity in
" a model in order to localize the spin-1/2 fermion on our
whereN, are the wave function normalization constants anddefect, which has the exponentially decreasing warp factor.
a, are constant coefficients. The differential operator in Eqln this paper, we simply consider fermions on the stringlike
(32) is self-adjoint provided that one imposes the boundanydefect.
conditions[18] To see that only the massless zero mode withO
couples to fermions on the defect, it is useful to examine the
Xn(0)=x/()=0. (37)  Yukawa coupling whose interaction term is given by

These boundary conditions lead to the relations 5 —
B Syvo= —gq)f d°x\—gW¥Vds(r). (43
= Jp-12(Zn(0)) — J(p-1)2(Za(r))
Y (p-1)12(Za(0)) B Y(p—l)/Z(Zn(r_)), (38) The integration over the angular variable and the KK expan-

sion (28) yield
wherer indicates the infrared cutoff, which is taken to be an

an=

infinity at the end of calculations. Incidentally, in deriving _ J' PAD . (n,0)
Eqg. (38) we have used the formula holding in the Bessel Swwe gq’\/R—O d XlIMI,nz'o ¢ X0x(0). (44
functions:

The wave function for the zero mode is a constant and from
, v the orthonormality conditiori34) we have the zero mode
Z,(2)=2, (1)~ 2Z,(2), (39 Y condition34
__[e(p—1)
with Z beingJ or Y. Now in the limitM ,<c, the KK masses Xo= 5 (45)
can be derived from the equatif]

For the excited KK modeg,(0) with n=1, it is easy to

J(p-1)2Zn(r))=0, (40 evaluatey,(0) in the limit M ,<c:
which gives us the approximate mass formula 1 2 o
c b 1 Xn(O)ZN—J(p+1)/2(EMn):\/Epm(r), (46)
- n
anz n+ Z — E) me °2, (41
where Eq.(42) was used. Moreover, defining the effective
Moreover, the normalization constaNt, takes the approxi- P-dimensional coupling constant as go
mate form in the limitM ,<c, =geV[c(p—1)/2] Ry, the Yukawa interaction can be ex-
o pressed as
Z,(r) —
N,=\/c ;—WJ(erl)/z(Zn(r))- (42

Syve= _E](t)f dpx‘l"l’[dﬁ(o’o)(x)

Note that in the limitr—o, M, approach zero as in the .
graviton [18], which is a characteristic feature of noncom- N | 2 PS4m0
pact extra dimensions. The KK masses of a scalar field are p—1 =1
given by notM, but m,, so it turns out that they approach
12/R3. Accordingly, only theswave (=0) mode becomes From this equation, it is obvious that the effective coupling
massless on the stringlike defect while the other modes aref the excited KK modes witm=1 to the defect fermion

. (47)
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vanishes in the limit —c owing to the presence &Y4(r) 12
AD(x*)=0. (59)

in front of the second term. On the other hand, the massless n*"d,0,— E
zero mode withn=0 has a coupling constant of order 1. 0
Hence, only the massless zero mode resides in the stringli
defect.

iﬁ% addition, Eq.(52) leads to a general solution fgi(r):

g(r)=ap~(P~H72 (55)
IV. KALUZA-KLEIN DECOMPOSITION _ _ _ _ _ _
OF VECTOR FIELD with @ being an integration constant. Finally, using Ezp),

. ] Eq. (50 reduces to the form
Next we turn our attention to the case of vector field. It

was shown in the Randall-Sundrum model in Ad§pace (n””&ﬂa,,—mﬁ)A(A”")(x“):O. (56)
that the spin-1 vector field is not localized either on a brane

with positive tension or on a brane with negative tension, sdiere we have requireti,(r) to satisfy the differential equa-
the Dvali-Shifman mechanisfi28] must be invoked for the tion

vector field localizatior{11,9]. On the other hand, we have |2

shown that the spin-1 vector field localized on a stringlike —( p-(P=3)2y pP=1)/2y — —2> fo(r)=mif.(r). (57)
defect like spin-0 scalar and spin-2 graviton fie]@g]. So Ro

we do not need to introduce additional mechanisms for the ) ) ]

vector field localization in the case at hand. The localization AS in the case of a scalar field, let us substitute the KK

of the vector field on the defect therefore allows us to thinkeXPansion53) and the solutior(55) into the starting action
of the bulk vector field. (48), whose result is given by

Let us start with the action of thg (1) vector field:

- 1
S,= dP T ouv )\pF(n,l)F(n,I)
(o MN R " J Xn,lzzo 4 TN v
Sa=— 7| d°xV-gg"Ng"FyrFys, (48) 2
_ lmﬁn,uvA(nJ)A(n,l) _ @
whereFyn=duAn—dnAy @s usual(The extension to the 2 a c(p—1)

case of non-Abelian gauge fields is straightforwpietom

this action the equations of motion are given by X[P(r)~ <p‘1>’2—1]f dPx
L, (V—gg"NgRSFy9=0 (49 S | vy Ay A+ L ADAD
N 9979 " Fy : xlzo 779,AVa,Al +¥Ar AV (58
- 0
With the background metri¢18) and the gauge conditions where we have used E(B0) and the orthonormality condi-
d,A"=A,=0, these equations become tion for f,(r):
70,9, + PEPI2y P12y 4 izag A, fo drP®P=372f £ =5 . (59
RO
— PGPy plp-1i2g5 A =0, (500  Note that the coefficient in front of the action of the scalar

field A, becomes divergent in the limit—co, but this diver-
gence can be absorbed in the redefinition of the figld.
A =0, (51)  That is, by performing the field redefinition

1G9 +ia2
Y nCv R2 4
0

2 —
3 (P15, ) =0, (52) Al —a\[ g =gy VP~ P2 -1A,

Let us take the following forms of the KK decomposition e arrive at the expression
for later convenience:

. 1
fa(r) SA:f drx S _Z,’]ﬂvn)\pl:g'l}(|)|:$}rl1),|)

Y|(0), n,I=0

A OM = ADD(xm)
n,l=0 0

1 1
m2 v AMD AN
2 n77'u y23 AV :| 2J’ de

- g(r)
AOM = AD(x)Z=Y,(0). (53
=0 JRy ®

. (60

|2
7, A0 A+ ADAY
0

Then, from Eq.(51) we have
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Here notice that the second integral describes that th&pon integrating ove® and using the KK expansiofb3),
“gauge scalar” has the same structure as the action of theve obtain, for the gauge-fermion interaction term,
scalar field(33). Thus, following an argument similar to the o
case of a scalar field, it is straightforward to show that only Sy .= _gA\/R_Of dPx Wyt X AMO()f,(0)W.
the massless zero mode of the “gauge scalar” couples to the n=0
fermion on the defect. Therefore, in what follows, we shall (68)
consider thep-dimensional gauge field , .

To examine the KK spectrum, we can follow a path of
argument similar to that of a scalar field in Sec. Ill. This

time, by definingh,= P~V Eq.(57) can be written as c(p—3)
foz .
2
Recall that this zero mode is localized on the stringlike de-

d2+1 d+ L 1(p—1)2
dz2  zndz 2\ 2
fect and is identified with the usual “photon” of the

whose solution is also expressed in terms of the Bessel fung-dimensional Minkowski space-tin{@2] while it is not lo-

The wave function for the zero mode is again a constant
and the orthonormality conditiof®9) gives us the zero mode

(69)
h,=0, (61)

tions of order p—1)/2: calized on the domain wdlB,11]. For the excited KK modes
1 f,(0) with n=1, it is easy to evaluaté,(0) in the limit
fn(zn)= N_P_(p_l)/A[J(p—l)/Z(Zn)+anY(p—l)/Z(Zn)]y Mp=<c: 1 5
n N
(62) fr(0)= N_nJ(p—l)IZ(EMn) =\JcPY4(r), (70)

where N,, are new wave function normalization constants o )
and a,, are new constant coefficients. The same boundaryvhere Eq.(66) was used. Then, defining the effective
conditions(37) for f,(r) lead to the relations p-dimensional U(1) coupling constant as g

_ =gal ve(p—3)/2]R,, the interaction term reads
Jp-3)2Zn(0)) — Jp-3)(zn(1)) 63

" Y(p-3)e(za(0) Y (p-3)2Za(r) %t:_aAJ dPx Wy~

(0,0)
AL (x)

In the limit M,<<c, the KK masses can be derived from

the equation 2 _
a 2PN S AN
p—3 n=1 *

Jip-3)AzZa(1))=0, (64)

which gives us the approximate mass formula

. (7D

From this equation, it is obvious that the coupling of the
excited KK modes to the defect fermion vanishes in the limit

n-+ p_ 1) e Ci2, (65) r— owing to the presence &¥4(r) as in the scalar field. .

4 On the other hand, the massless zero mode has a coupling
o . constant of order 1 as desired. Thus, this model is consistent
And the normalization constarit, takes the approximate \yith gauge fields existing in the bulk, which should be con-
form — trasted with the Randall-Sundrum mod@,9]. Of course,

N. = Zy(T) J M 66 further studies are necessary to assure the consistency of the
n=\C (p—1)/2(Zn(1)). (66)
2M, model at hand at the quantum level.

C
ani

Note that ir; th2e I.imitr_—>oo, the KK masses of vector field V. DISCUSSIONS
are given byl“/R; like the scalar case. Hence, as expected, _ o _
only the s wave (=0) becomes massless on thébrane In this paper we have explored the possibility of placing a

defect while the other modes are massive. This time, comsPin-0 scalar field and spin-1 vector gauge field in the bulk in
pared to the scalar case, it is more important to show thadf€ stringlike defect model in detail. We have derived the
only one massless mode with=0 resides in the defect since Scalar and the gauge field KK spectra from examination of
such a massless zero mode would be regarded as a unigtit¢ action of the theory and also analyzing the equations of
“photon” on the defect. motion. _

We are now ready to consider the coupling of the gauge We then computed the scalar-fermion and the gauge-
KK modes to spin-1/2 fermions on thebrane defect. The fermion interactions on the stringlike defect and found that

fermion kinetic and gauge interaction terms are given by the excited KK states with respect to the radial quantum
number do not couple to fermion on the defect in the infinite

_ b — M . " cutoff limit, whereas the massless zero modes, which are
S\I'_J dOx/=gWil™ (9, +igaA,) ¥ 5 (1), (67) nothing but the “Higgs” particle and the usual “photon” of
the Minkowski space-time in the cases of scalar and gauge
where the curved gamma matricE$ and the flat gamma bosons, respectively, couple to fermions with order unity.
ones y* are related through the relatiodd*= P~ 12y# Since it has been already shown that the spin-2 graviton is
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localized on the defed¢®2] and yields the desired Newton’s terestingly enough, the metric of two internal dimensions is
law with tiny correction terms on the defeld8], the model conformally flat, so the powerfEuclidean conformal field
which we consider equips us with desirable physical propertheory technique can be naturally applied to our model.
ties. Of course, to make the model at hand more realistic we Finally let us comment on a supersymmetric realization of
need additional interactions except gravity for localizing fer-the present model. A lot of attention has been recently de-
mions on the defect, but we wish to insist that a supergravitywoted to the construction of a supersymmetric Randall-
model corresponding to the present model would resolve thiSundrum mode[29-35 and advocated some no-go theo-
problem in a natural way even if we could localize fermionicrems. Then it is of interest to ask whether there are
fields by introducing additional interaction terms betweensupersymmetric relations between our 6D model and the 5D
bosons and fermions by hand. Randall-Sundrum model. Through a simple KK dimensional
Let us restrict the following argument to the casepof reduction, it seems that the background metric in our model
=4 andD=6. In this case, it is of interest to imagine that reduces to the one in the Randall-Sundrum model. At the
10D superstring theory might be compactified on a Calabisame timeN=2, 6D supergravity would reduce =2, 5D
Yau twofold manifold, i.e., K3 by the conventional Kaluza- supergravity. Thus, if we cannot construct a supersymmetric
Klein mechanism, yielding 6D theory, and then the 6Dversion of the Randall-Sundrum model, it might be also dif-
theory is compactified to our four-dimensional space-timeficult to construct a supersymmetric model of our 6D theory.
according to the alternative compactification scenario disBut there recently appeared an interesting construction of a
cussed in this paper. Here it is worthwhile to mention thatsupersymmetric Randall-Sundrum mod&5]. The corre-
the 6D local field theory is a very interesting field theory. sponding construction of our 6D model is now being actively
(Correspondingly, 6D supergravity theory possesses a richénvestigated, so we hope to report on this construction in the
structure than 5D supergravity theory in many respgéist  near future.
instance, the 6D local field theory is a free theory with a
trivial cubic scalar self-interaction with unrenormalizable
Einstein-Hilbert and Yang-Mills actions, so it is expected We are indebted to M. Tonin for valuable discussions and
that “little” superstring theory may play an essential role. continuous encouragement. We wish to thank Dipartimento
Furthermore, our model in six space-time dimensions has Bi Fisica, “Galileo Galilei,” Universita Degli Studi Di
physical setting where our world is a three-brane embeddeBadova, for a kind hospitality, where most of this work has
in 6D space-time with nonfactorizable warped geometry. In-been done.
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