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Bosonic fields in the stringlike defect model

Ichiro Oda*
Edogawa University, 474 Komaki, Nagareyama City, Chiba 270-0198, Japan

~Received 2 August 2000; published 22 November 2000!

We study localization of bosonic bulk fields on a stringlike defect with codimension 2 in a general space-
time dimension in detail. We show that in cases of spin-0 scalar and spin-1 vector fields there are an infinite
number of massless Kaluza-Klein states which are degenerate with respect to the radial quantum number, but
only the massless zero-mode state among them is coupled to the fermion on the stringlike defect. We also
comment on interesting extensions of the model at hand to various directions such as ‘‘little’’ superstring
theory, conformal field theory, and a supersymmetric construction.

PACS number~s!: 11.25.Mj, 11.27.1d
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I. INTRODUCTION

In theories where our four dimensional world is a thre
brane embedded in a higher-dimensional space@1–5#, the
conventional Kaluza-Klein scenario would be modified dr
tically. In most works on Kaluza-Klein compactification thu
far, a higher-dimensional manifold is assumed to be co
posed of as a direct product of a noncompact fo
dimensional Minkowski space-time and a compact inter
manifold with the size of the compact space being set by
Planck scale. However, in this approach it seems to be q
difficult to stabilize the size of all the internal dimensio
around the Planck scale via some nonperturbative effe
This problem should be solved in the brane world.1

In recent years, an alternative scenario of compactifica
has been put forward@5#. This new idea is based on th
possibility that our world is a three-brane embedded in
higher-dimensional space-time with a nonfactoriza
warped geometry. In this scenario, we are free from
moduli stabilization problem in the sense that the inter
manifold is noncompact and does not need to be compa
fied to the Planck scale anymore, which is one of reas
why this new compactification scenario has attracted
much attention. An important ingredient of this scenario
that all the matter fields are thought of as confined to
three-brane, whereas gravity is free to propagate in the e
dimensions. Such localization of matter would be inde
possible in D-brane theory@6# and M theory @7#, but at
present it is far from complete to realize the Runda
Sundrum model@5# within the framework of superstring
theory. Thus, it is worthwhile to explore whether such loc
ization is also possible in local field theory.

In fact, the localization mechanism has been recently
vestigated in AdS5 space@8–12#. In particular, it is shown
that the spin-0 field is localized on a brane with positi
tension which also localizes the graviton@11#, while the
spin-1 field is not localized either on a brane with positi

*Email address: ioda@edogawa-u.ac.jp
1In a supersymmetric model, flat directions could appear so

the stability problem of moduli seems at first glance to be not
important as in a nonsupersymmetric model. But in this case,
need a fine-tuning of the parameters.
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tension or on a brane with negative tension@9,11#. Moreover,
it is shown that spin-1/2 and -3/2 fields are localized not
a brane with positive tension but on a brane with negat
tension@10,11#. Thus, in order to satisfy the localization o
standard model particles on a brane with positive tension
seems that some additional interactions except gravity m
be also introduced in the bulk.

More recently, the possibility of extending the Randa
Sundrum domain wall model to higher-dimensional top
logical objects was explored@13–23#. In particular, we find
that Einstein’s equations admit a stringlike defect with co
mension 2 in addition to a domain wall with codimension 12

In particular, the existence of the stringlike defect make
possible to think of a three-brane in six-dimensional anti–
Sitter space.

In this stringlike defect model, the localization of bu
fields has been also investigated. In Ref.@18#, it is shown
that the spin-2 graviton is localized on the three-brane
the corrections to Newton’s law are more supressed tha
the domain wall model. Afterwards, the present author
plored the localization of various spin fields on the stringli
defect in a general dimension and obtained the follow
facts@22#: spin-0, -1, and -2 bosonic fields are localized on
stringlike defect with the exponentially decreasing warp fa
tor, whereas spin-1/2 and3/2 fermionic fields are localized
a defect with the exponentially increasing warp factor. The
results for the localization of various spin fields coinci
with the corresponding ones@11# in the Randall-Sundrum
model @5# and many brane modes@24,25# except the spin-1
vector field. It is of interest that there is no localized vec
field on the brane in the domain wall model,3 while the vec-
tor field can be localized on the defect in the stringli
model. This phenomenon can be briefly explained as
lows: In the Randall-Sundrum model, we can see that

at
o
e

2In this terminology, topological defects with codimensions 3 a
4, respectively, would be called a monopolelike defect and an
stantonlike defect.

3See Ref.@26# for an interesting possibility of electric charge no
conservation in a brane world where a higher-dimensional gene
zation of the Randall-Sundrum model is used in order to loca
gauge fields on a brane.
©2000 The American Physical Society09-1
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overall coefficient in front of the gauge field action is dive
gent so that we do not have a normalizable zero mode of
bulk gauge field. On the other hand, in our stringlike mod
we have an additional warped factor coming from part of
angular variable in the background metric in addition to
conventional warped factor. Combined with these t
warped factors, the coefficient in front of the action becom
finite, so the zero mode of the bulk gauge field is norma
able and is consequently localized on the stringlike defe

One aim of the present paper is to investigate this in
esting property of bulk bosonic fields in the stringlike defe
model in more detail. The case of a spin-2 graviton field h
been already examined in Refs.@18,23#, so we will concen-
trate on the study of spin-0 scalar and spin-1 vector fie
We will show that there are an infinite number of massl
Kaluza-Klein~KK ! modes which are degenerate with resp
to the radial quantum number, but only one massless fi
among them is coupled to fermions on the stringlike defe
Moreover, the KK excitations of the gauge field have va
ishing coupling to spin-1/2 fermions on the defect, so
gauge field can exist in the bulk without meeting any ph
nomenological constraints on the model, which should
contrasted with the Randall-Sundrum domain wall mo
where the strong coupling of the KK excitations of gau
fields to the brane fermion gave rise to a potential inter
inconsistency within the theory@8,9#.

This paper is organized as follows. In the next section,
review a stringlike defect solution with codimension 2.
Sec. III, the Kaluza-Klein decomposition of scalar fields
studied in a background obtained in Sec. II. Then, in Sec.
the procedure used in Sec. III is applied to the case of ga
fields. The final section is devoted to a discussion.

II. STRINGLIKE DEFECT

Let us start with a brief review of a stringlike defect s
lution to Einstein’s equations with sources to fix our notati
and conventions@22#. We consider Einstein’s equations wit
a bulk cosmological constantL and an energy-momentum
tensorTMN in generalD dimensions:
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1

2
gMNR52LgMN1kD

2 TMN , ~1!

wherekD denotes theD-dimensional gravitational constan
Throughout this article we follow the standard conventio
and notation of the textbook of Misner, Thorne, and Whee
@27#.

Let us adopt the following metricAnsatz:

ds25gMNdxMdxN5gmndxmdxn1g̃abdxadxb

5e2A(r )ĝmndxmdxn1dr21e2B(r )dVn21
2 , ~2!

whereM ,N, . . . denoteD-dimensional space-time indices
m,n, . . . p-dimensional brane ones, anda,b, . . .
n-dimensional extra spatial ones, so the equalityD5p1n
holds.~We assumep>4.! And dVn21

2 stands for the metric
on a unit (n21)-sphere, which is concretely expressed
terms of the angular variablesu i as

dVn21
2 5du2

21sin2 u2du3
21sin2 u2sin2 u3du4

21•••

1 )
i 52

n21

sin2u idun
2 . ~3!

Moreover, we shall take theAnsatz for the energy-
momentum tensor respecting the spherical symmetry:

Tn
m5dn

mto~r !,

Tr
r5t r~r !,

Tu2

u25Tu3

u35•••5Tun

un5tu~r !, ~4!

wheret i ( i 5o,r ,u) are functions of only the radial coordi
nater.

With theseAnsätze, after a straightforward calculation
Einstein’s equations~1! reduce to
eAR̂2
p~n21!

2
A8B82

p~p21!

4
~A8!22

~n21!~n22!

4
~B8!21~n21!~n22!eB22L12kD

2 t r50, ~5!

eAR̂1~n22!B92
p~n22!

2
A8B82

~n21!~n22!

4
~B8!21~n22!~n23!eB1pA92

p~p11!

4
~A8!222L12kD

2 tu50, ~6!

p22

p
eAR̂1~p21!S A92

n21

2
A8B8D2

p~p21!

4
~A8!21~n21!FB92

n

4
~B8!21~n22!eBG22L12kD

2 to50, ~7!
9-2
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where the prime denotes the differentiation with respect tr,
andR̂ is the scalar curvature associated with the brane me
ĝmn . Here we define the cosmological constant on thep
21)-brane,Lp , by the equation

R̂mn2
1

2
ĝmnR̂52Lpĝmn . ~8!

In addition, the conservation law for the energy-moment
tensor,¹MTMN50, takes the form

t r85
p

2
A8~ t r2to!1

n21

2
B8~ t r2tu!. ~9!
d

to

A

12600
ic
Our purpose is to find a stringlike defect solution, that

n52, with a warp factorA(r )5cr (c is a positive constant!
to the above equations.~The case ofn51 corresponds to a
domain wall solution.! The necessity of this exponentiall
decreasing warp factor is to bind gravity to thep-brane. For
generality, we consider a general space-time dimensioD
and a general brane dimensionp with D5p12, but the
physical interest, of course, lies in the case of six space-t
dimensions (D56) and a three-brane (p54). In the case of
n52, under theAnsatz A(r )5cr, Einstein’s equations~5!,
~6!, ~7! are of the form
ecrR̂2
p

2
cB82

p~p21!

4
c222L12kD

2 t r50, ~10!

ecrR̂2
p~p11!

4
c222L12kD

2 tu50, ~11!

p22

p
ecrR̂2

p21

2
cB82

p~p21!

4
c21B92

1

2
~B8!222L12kD

2 to50, ~12!
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-
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t r85
p

2
c~ t r2to!1

1

2
B8~ t r2tu!. ~13!

From these equations, general solutions can be foun
follows:

ds25e2crĝmndxmdxn1dr21e2B(r )du2, ~14!

where

B~r !5cr1
4

pc
kD

2 E r

dr~ t r2tu!, ~15!

c25
1

p~p11!
~28L18kD

2 a!,

R̂5
2p

p22
Lp522kD

2 b. ~16!

Here tu must take a definite form, which is given by

tu5becr1a, ~17!

with a and b being some constants. Moreover, in order
guarantee the positivity ofc2, a should satisfy an inequality
28L18kD

2 a.0.
Two types of special solution deserve more scrutiny.

specific solution is the one without sources (t i50). Then we
get a special solution which was found for alocal string in
Ref. @18# and for aglobal string in Ref.@15#:
as

ds25e2crĝmndxmdxn1dr21R0
2e2crdu2, ~18!

with R0 being a length scale which we take to be of ord
unity. Here the positive constantc, the brane scalar curva
ture, and the brane cosmological constant are, respectiv
given by

c25
28L

p~p11!
,

R̂5
2p

p22
Lp50. ~19!

In this case, as in the corresponding domain wall soluti
the bulk geometry is the anti–de Sitter space, and the br
geometry is Ricci flat with vanishing cosmological consta
It has been recently found that this special solution cor
sponds to alocal defect in the sense that the energ
momentum tensor is strictly vanishing outside the string c
@18,23#

Another specific solution occurs when we have the sp
taneous symmetry breakdownt r52tu @17#:

ds25e2crĝmndxmdxn1dr21R0
2e2c1rdu2, ~20!

where
9-3
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c25
1

p~p11!
~28L18kD

2 tu!.0,

c15c2
8

pc
kD

2 tu ,

R̂5
2p

p22
Lp50. ~21!

Notice that this solution is more general than the previo
one ~18! since this solution reduces to Eq.~18! when tu
50. In Ref.@23#, the solution~20! was called aglobal defect
since there appears a hedgehog-type configuration ou
the string core.

To close this section, let us comment on an interest
global defect recently found in a general dimension in R
@23#. To gain theglobal topological defect, the antisymme
ric tensor field with rankn22 is added to the Einstein
Hilbert action with a cosmological constant. Then t
energy-momentum tensor associated with the (n22)-form
field in the bulk has the property

t05t r52tu . ~22!

The Ansatztaken in Ref.@23# is

A~r !5cr, B~r !5const. ~23!

With this Ansatz~23!, it is easy to see that Einstein’s equ
tions ~5!, ~6!, ~7! and the conservation law~9! require impor-
tant equations

t05t r5const, tu5const, ~24!

in addition to the other inessential equations for the pres
consideration. These conditions~24! are more general tha
Eq. ~22!, so if an energy-momentum tensor satisfies E
~24!, Einstein’s equations with such an energy-moment
tensor would admit theglobal topological defect with back-
ground metric~23! as a solution in a general space-time
mension. Finally, note that this newglobal defect has the
same property as the domain wall with respect to the lo
ization of various bulk fields.

III. KALUZA-KLEIN DECOMPOSITION
OF SCALAR FIELD

In a previous paper, it was shown that spin-0, -1, and
bosonic fields are localized on thep-brane defect with the
exponentially decreasing warp factor, while spin-1/2 a
53/2 fermionic fields are not so in the stringlike defect@22#.
Thus, it is natural to consider first the case of a bulk sca
field. The case of a bulk vector field will be examined in t
next section. The spin-2 graviton was examined in detai
Ref. @18#, so we skip this case in this paper. From now o
for clarity we shall limit our attention to alocal stringlike
solution ~18! since the generalization to aglobal solution
~20! is straightforward. Of course, we have implicitly a
sumed that various bulk fields considered below make li
contribution to the bulk energy so that the solution~18! re-
mains valid even in the presence of bulk fields.
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Let us consider the action of a massless real sc
coupled to gravity,

SF52
1

2E dDxA2ggMN]MF]NF, ~25!

from which the equation of motion can be derived:

1

A2g
]M~A2ggMN]NF!50. ~26!

From now on we shall takeĝmn5hmn and defineP(r )
5e2cr. In the background metric~18!, the equation of mo-
tion ~26! reads

P21hmn]m]nF1P2(p11)/2] r~P(p11)/2] rF!1
1

R0
2

P21]u
2F

50. ~27!

Let the KK expansion ofF be given by

F~xM !5 (
n,l 50

`

f (n,l )~xm!
xn~r !

AR0

Yl~u!. ~28!

Here Yl(u) are in general the eigenfunction of the sca
LaplacianD on a unit (n21)-sphere with the eigenvalue
l ( l 1n22). Now we are taking account of a stringy defe
with codimension 2; i.e.,n is chosen to 2, so we have a
equation

DYl~u!5 l 2Yl~u!, ~29!

with l 50,1,2, . . . . And Yl(u) satisfy the following ortho-
normality condition:

E
0

2p

duYl~u!Yl 8~u!5d l l 8 . ~30!

Using the KK expansion~28!, the equation of motion~27!
reduces to the well-known Klein-Gordon equation with t
KK massesmn ,

~hmn]m]n2mn
2!f (n,l )50, ~31!

where we have requiredx to satisfy the following differen-
tial equation:

2S P2(p21)/2] r P
(p11)/2] r2

l 2

R0
2D xn5mn

2xn . ~32!

Actually, it is easily shown that by means of Eqs.~28!, ~29!,
~30!, and~32! the starting action~25! can be written as

SF52
1

2 (
n,l 50

` E dpx@hmn]mf (n,l )]nf (n,l )

1mn
2f (n,l )f (n,l )#, ~33!

where we have also used the orthonormality condition
9-4
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E
0

`

drP(p21)/2xnxn85dnn8 . ~34!

To analyze the scalar KK mass spectrum, it is necess
to solve Eq.~32! explicitly. Defining Mn

25mn
22 l 2/R0

2 , zn

5(2/c) MnP21/2 andhn5P(p11)/4xn , Eq. ~32! can be writ-
ten in the form

F d2

dzn
2

1
1

zn

d

dzn
1H 12

1

zn
2 S p11

2 D 2J Ghn50, ~35!

which is nothing but the Bessel equation of orderp
11)/2. Thus, the solutions are of the form

xn5
1

Nn
P2(p11)/4@J~p11!/2~zn!1anY(p11)/2~zn!#, ~36!

whereNn are the wave function normalization constants a
an are constant coefficients. The differential operator in E
~32! is self-adjoint provided that one imposes the bound
conditions@18#

xn8~0!5xn8~`!50. ~37!

These boundary conditions lead to the relations

an52
J(p21)2„zn~0!…

Y(p21)/2„zn~0!…
52

J(p21)/2„zn~ r̄ !…

Y(p21)/2„zn~ r̄ !…
, ~38!

wherer̄ indicates the infrared cutoff, which is taken to be
infinity at the end of calculations. Incidentally, in derivin
Eq. ~38! we have used the formula holding in the Bes
functions:

Zn8~z!5Zn21~z!2
n

z
Zn~z!, ~39!

with Z beingJ or Y. Now in the limit Mn!c, the KK masses
can be derived from the equation@9#

J(p21)/2„zn~ r̄ !…50, ~40!

which gives us the approximate mass formula

Mn5
c

2 S n1
p

4
2

1

2Dpe2cr̄/2. ~41!

Moreover, the normalization constantNn takes the approxi-
mate form in the limitMn!c,

Nn5Ac
zn~ r̄ !

2Mn
J(p11)/2„zn~ r̄ !…. ~42!

Note that in the limitr̄→`, Mn approach zero as in th
graviton @18#, which is a characteristic feature of noncom
pact extra dimensions. The KK masses of a scalar field
given by notMn but mn , so it turns out that they approac
l 2/R0

2. Accordingly, only thes-wave (l 50) mode becomes
massless on the stringlike defect while the other modes
12600
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massive. Here it is worth noticing that the masslesss-wave
mode is degenerate with respect to the radial quantum n
ber n since the KK masses depend on onlyl in the limit r̄
→`. Thus, we are in danger of the existence of an infin
number of massless modes on the defect, which seems
against the phenomenology. Luckily enough, however,
will be shown below, only a unique massless mode withn
50 couples to fermions on the defect since the coupl
constant between the remaining massless modes withn>1
and the defect fermion vanishes in the infinite volume lim
It would be then natural to identify this massless zero mo
with n50 as the Higgs field in our world from the phenom
enological viewpoint.

As is shown in Ref.@22#, the spin-1/2 fermion is localized
on a defect with an exponentially rising warp factor, so it
necessary to invoke additional interactions except gravity
a model in order to localize the spin-1/2 fermion on o
defect, which has the exponentially decreasing warp fac
In this paper, we simply consider fermions on the stringli
defect.

To see that only the massless zero mode withn50
couples to fermions on the defect, it is useful to examine
Yukawa coupling whose interaction term is given by

SC̄CF52gFE dDxA2gC̄CFd~r !. ~43!

The integration over the angular variable and the KK exp
sion ~28! yield

SC̄CF52gFAR0E dpxC̄C (
n50

`

f (n,0)~x!xn~0!. ~44!

The wave function for the zero mode is a constant and fr
the orthonormality condition~34! we have the zero mode

x05Ac~p21!

2
. ~45!

For the excited KK modesxn(0) with n>1, it is easy to
evaluatexn(0) in the limit Mn!c:

xn~0!5
1

Nn
J(p11)/2S 2

c
MnD5AcP1/4~ r̄ !, ~46!

where Eq.~42! was used. Moreover, defining the effectiv
p-dimensional coupling constant as g̃F

5gFA@c(p21)/2# R0, the Yukawa interaction can be ex
pressed as

SC̄CF52g̃FE dpxC̄CFf (0,0)~x!

1A 2

p21
P1/4~ r̄ ! (

n51

`

f (n,0)~x!G . ~47!

From this equation, it is obvious that the effective coupli
of the excited KK modes withn>1 to the defect fermion
9-5
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ICHIRO ODA PHYSICAL REVIEW D 62 126009
vanishes in the limitr̄→` owing to the presence ofP1/4( r̄ )
in front of the second term. On the other hand, the mass
zero mode withn50 has a coupling constant of order
Hence, only the massless zero mode resides in the string
defect.

IV. KALUZA-KLEIN DECOMPOSITION
OF VECTOR FIELD

Next we turn our attention to the case of vector field.
was shown in the Randall-Sundrum model in AdS5 space
that the spin-1 vector field is not localized either on a bra
with positive tension or on a brane with negative tension,
the Dvali-Shifman mechanism@28# must be invoked for the
vector field localization@11,9#. On the other hand, we hav
shown that the spin-1 vector fieldis localized on a stringlike
defect like spin-0 scalar and spin-2 graviton fields@22#. So
we do not need to introduce additional mechanisms for
vector field localization in the case at hand. The localizat
of the vector field on the defect therefore allows us to th
of the bulk vector field.

Let us start with the action of theU(1) vector field:

SA52
1

4E dDxA2ggMNgRSFMRFNS, ~48!

whereFMN5]MAN2]NAM as usual.~The extension to the
case of non-Abelian gauge fields is straightforward.! From
this action the equations of motion are given by

1

A2g
]M~A2ggMNgRSFNS!50. ~49!

With the background metric~18! and the gauge condition
]mAm5Au50, these equations become

S hmn]m]n1P~32p!/2] r P
~p21!/2] r1

1

R0
2
]u

2D Al

2P~32p!/2] r P
~p21!/2]lAr50, ~50!

S hmn]m]n1
1

R0
2
]u

2D Ar50, ~51!

] r~P(p21)/2]uAr !50. ~52!

Let us take the following forms of the KK decompositio
for later convenience:

Am~xM !5 (
n,l 50

`

Am
(n,l )~xm!

f n~r !

AR0

Yl~u!,

Ar~xM !5(
l 50

`

Ar
( l )~xm!

g~r !

AR0

Yl~u!. ~53!

Then, from Eq.~51! we have
12600
ss
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S hmn]m]n2
l 2

R0
2D Ar

( l )~xm!50. ~54!

In addition, Eq.~52! leads to a general solution forg(r ):

g~r !5aP2(p21)/2, ~55!

with a being an integration constant. Finally, using Eq.~55!,
Eq. ~50! reduces to the form

~hmn]m]n2mn
2!Al

(n,l )~xm!50. ~56!

Here we have requiredf n(r ) to satisfy the differential equa
tion

2S P2(p23)/2] r P
(p21)/2] r2

l 2

R0
2D f n~r !5mn

2f n~r !. ~57!

As in the case of a scalar field, let us substitute the K
expansion~53! and the solution~55! into the starting action
~48!, whose result is given by

SA5E dpx (
n,l 50

` F2
1

4
hmnhlrFml

(n,l )Fnr
(n,l )

2
1

2
mn

2hmnAm
(n,l )An

(n,l )G2
a2

c~p21!

3@P~ r̄ !2 ~p21!/221#E dpx

3(
l 50

` Fhmn]mAr
( l )]nAr

( l )1
l 2

R0
2

Ar
( l )Ar

( l )G , ~58!

where we have used Eq.~30! and the orthonormality condi
tion for f n(r ):

E
0

`

drP(p23)/2f nf n85dnn8 . ~59!

Note that the coefficient in front of the action of the sca
field Ar becomes divergent in the limitr̄→`, but this diver-
gence can be absorbed in the redefinition of the fieldAr

( l ) .
That is, by performing the field redefinition

Ar
( l )→aA 2

c~p21!
AP~ r̄ !2 ~p21!/221Ar

( l ) ,

we arrive at the expression

SA5E dpx (
n,l 50

` F2
1

4
hmnhlrFml

(n,l )Fnr
(n,l )

2
1

2
mn

2hmnAm
(n,l )An

(n,l )G2
1

2E dpx

3(
l 50

` Fhmn]mAr
( l )]nAr

( l )1
l 2

R0
2

Ar
( l )Ar

( l )G . ~60!
9-6
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Here notice that the second integral describes that
‘‘gauge scalar’’ has the same structure as the action of
scalar field~33!. Thus, following an argument similar to th
case of a scalar field, it is straightforward to show that o
the massless zero mode of the ‘‘gauge scalar’’ couples to
fermion on the defect. Therefore, in what follows, we sh
consider thep-dimensional gauge fieldAm .

To examine the KK spectrum, we can follow a path
argument similar to that of a scalar field in Sec. III. Th
time, by defininghn5P(p21)/4f n , Eq. ~57! can be written as

F d2

dzn
2

1
1

zn

d

dzn
1H 12

1

zn
2 S p21

2 D 2J Ghn50, ~61!

whose solution is also expressed in terms of the Bessel f
tions of order (p21)/2:

f n~zn!5
1

Nn
P2(p21)/4@J(p21)/2~zn!1anY(p21)/2~zn!#,

~62!

where Nn are new wave function normalization constan
and an are new constant coefficients. The same bound
conditions~37! for f n(r ) lead to the relations

an52
J(p23)/2„zn~0!…

Y(p23)/2„zn~0!…
52

J(p23)/2„zn~ r̄ !…

Y(p23)/2„zn~ r̄ !…
. ~63!

In the limit Mn!c, the KK masses can be derived fro
the equation

J(p23)/2„zn~ r̄ !…50, ~64!

which gives us the approximate mass formula

Mn5
c

2 S n1
p

4
21Dpe2cr̄/2, ~65!

And the normalization constantNn takes the approximate
form

Nn5Ac
zn~ r̄ !

2Mn
J(p21)/2„zn~ r̄ !…. ~66!

Note that in the limitr̄→`, the KK masses of vector field
are given byl 2/R0

2 like the scalar case. Hence, as expect
only the s wave (l 50) becomes massless on thep-brane
defect while the other modes are massive. This time, c
pared to the scalar case, it is more important to show
only one massless mode withn50 resides in the defect sinc
such a massless zero mode would be regarded as a u
‘‘photon’’ on the defect.

We are now ready to consider the coupling of the gau
KK modes to spin-1/2 fermions on thep-brane defect. The
fermion kinetic and gauge interaction terms are given by

SC5E dDxA2gC̄ iGM~]m1 igAAm!CdM
m d~r !, ~67!

where the curved gamma matricesGm and the flat gamma
ones gm are related through the relationsGm5P21/2gm.
12600
e
e

y
e
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f
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-
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e

Upon integrating overu and using the KK expansion~53!,
we obtain, for the gauge-fermion interaction term,

SC̄CA52gAAR0E dpxC̄gm (
n50

`

Am
(n,0)~x! f n~0!C.

~68!

The wave function for the zero mode is again a const
and the orthonormality condition~59! gives us the zero mode

f 05Ac~p23!

2
. ~69!

Recall that this zero mode is localized on the stringlike d
fect and is identified with the usual ‘‘photon’’ of the
p-dimensional Minkowski space-time@22# while it is not lo-
calized on the domain wall@9,11#. For the excited KK modes
f n(0) with n>1, it is easy to evaluatef n(0) in the limit
Mn!c:

f n~0!5
1

Nn
J(p21)/2S 2

c
MnD5AcP1/4~ r̄ !, ~70!

where Eq. ~66! was used. Then, defining the effectiv
p-dimensional U(1) coupling constant as g̃A

5gA@Ac(p23)/2#R0, the interaction term reads

SC
int52g̃AE dpxC̄gmFAm

(0,0)~x!

1A 2

p23
P1/4~ r̄ ! (

n51

`

Am
(n,0)~x!GC. ~71!

From this equation, it is obvious that the coupling of t
excited KK modes to the defect fermion vanishes in the lim
r̄→` owing to the presence ofP1/4( r̄ ) as in the scalar field.
On the other hand, the massless zero mode has a cou
constant of order 1 as desired. Thus, this model is consis
with gauge fields existing in the bulk, which should be co
trasted with the Randall-Sundrum model@8,9#. Of course,
further studies are necessary to assure the consistency o
model at hand at the quantum level.

V. DISCUSSIONS

In this paper we have explored the possibility of placing
spin-0 scalar field and spin-1 vector gauge field in the bulk
the stringlike defect model in detail. We have derived t
scalar and the gauge field KK spectra from examination
the action of the theory and also analyzing the equation
motion.

We then computed the scalar-fermion and the gau
fermion interactions on the stringlike defect and found th
the excited KK states with respect to the radial quant
number do not couple to fermion on the defect in the infin
cutoff limit, whereas the massless zero modes, which
nothing but the ‘‘Higgs’’ particle and the usual ‘‘photon’’ o
the Minkowski space-time in the cases of scalar and ga
bosons, respectively, couple to fermions with order un
Since it has been already shown that the spin-2 gravito
9-7
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localized on the defect@22# and yields the desired Newton’
law with tiny correction terms on the defect@18#, the model
which we consider equips us with desirable physical prop
ties. Of course, to make the model at hand more realistic
need additional interactions except gravity for localizing f
mions on the defect, but we wish to insist that a supergra
model corresponding to the present model would resolve
problem in a natural way even if we could localize fermion
fields by introducing additional interaction terms betwe
bosons and fermions by hand.

Let us restrict the following argument to the case ofp
54 andD56. In this case, it is of interest to imagine th
10D superstring theory might be compactified on a Cala
Yau twofold manifold, i.e., K3 by the conventional Kaluz
Klein mechanism, yielding 6D theory, and then the 6
theory is compactified to our four-dimensional space-ti
according to the alternative compactification scenario d
cussed in this paper. Here it is worthwhile to mention th
the 6D local field theory is a very interesting field theor
~Correspondingly, 6D supergravity theory possesses a ri
structure than 5D supergravity theory in many respects.! For
instance, the 6D local field theory is a free theory with
trivial cubic scalar self-interaction with unrenormalizab
Einstein-Hilbert and Yang-Mills actions, so it is expect
that ‘‘little’’ superstring theory may play an essential rol
Furthermore, our model in six space-time dimensions ha
physical setting where our world is a three-brane embed
in 6D space-time with nonfactorizable warped geometry.
or
.
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terestingly enough, the metric of two internal dimensions
conformally flat, so the powerful~Euclidean! conformal field
theory technique can be naturally applied to our model.

Finally let us comment on a supersymmetric realization
the present model. A lot of attention has been recently
voted to the construction of a supersymmetric Rand
Sundrum model@29–35# and advocated some no-go the
rems. Then it is of interest to ask whether there a
supersymmetric relations between our 6D model and the
Randall-Sundrum model. Through a simple KK dimension
reduction, it seems that the background metric in our mo
reduces to the one in the Randall-Sundrum model. At
same time,N52, 6D supergravity would reduce toN52, 5D
supergravity. Thus, if we cannot construct a supersymme
version of the Randall-Sundrum model, it might be also d
ficult to construct a supersymmetric model of our 6D theo
But there recently appeared an interesting construction
supersymmetric Randall-Sundrum model@35#. The corre-
sponding construction of our 6D model is now being active
investigated, so we hope to report on this construction in
near future.
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